5=-16t^2+160t

Simple and best practice solution for 5=-16t^2+160t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5=-16t^2+160t equation:



5=-16t^2+160t
We move all terms to the left:
5-(-16t^2+160t)=0
We get rid of parentheses
16t^2-160t+5=0
a = 16; b = -160; c = +5;
Δ = b2-4ac
Δ = -1602-4·16·5
Δ = 25280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{25280}=\sqrt{64*395}=\sqrt{64}*\sqrt{395}=8\sqrt{395}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-8\sqrt{395}}{2*16}=\frac{160-8\sqrt{395}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+8\sqrt{395}}{2*16}=\frac{160+8\sqrt{395}}{32} $

See similar equations:

| -8k-6=10k+10 | | (6x-10)+(7x+1)=180 | | (x+5)*17=442 | | 5x-4(3x+4)=-16 | | x-4=2x=9 | | 5•t=105 | | 52=-6x-3 | | 5x+3x=8x-10-2 | | u+30+16u-27=360 | | 3x–6=6–2x . | | 3x–6=6–2x  | | t+34/8=7 | | 20b+28=48 | | 5(1+4h+2h=27 | | 24+3c=51 | | 2z+14=z+15 | | 2z+17=z+15 | | 6v^2-8=424 | | 5p+7=-9+2(p+4) | | 3y-50+7y=360 | | 2x+15=-27-4x | | -4(w-1)=-24 | | 10=2x-25 | | 3y+40=-20 | | 3y-50+7y=180 | | 6s+25=181 | | 1+3x^2=-5x | | 9+8x=115 | | 128=8(6v-8) | | -3(-8-6x)=78 | | 37.5n+1=-25 | | -7(5x+2)=-189 |

Equations solver categories